推荐收藏!机器学习领域最全综述列表!
日期: 2020-10-11 分类: 个人收藏 515次阅读
作者:kaiyuan,来源:NewBeeNLP
继续来给大家分享github上的干货,一个『机器学习领域综述大列表』,涵盖了自然语言处理、推荐系统、计算机视觉、深度学习、强化学习等主题。
另外发现源repo中NLP相关的综述不是很多,于是把一些觉得还不错的文章添加进去了,重新整理更新在 AI-Surveys[1] 中。
ml-surveys: https://github.com/eugeneyan/ml-surveys
AI-Surveys: https://github.com/KaiyuanGao/AI-Surveys
『收藏等于看完』系列,来看看都有哪些吧, enjoy!
自然语言处理
深度学习:Recent Trends in Deep Learning Based Natural Language Processing[2]
文本分类:Deep Learning Based Text Classification: A Comprehensive Review[3]
文本生成:Survey of the SOTA in Natural Language Generation: Core tasks, applications and evaluation[4]
文本生成:Neural Language Generation: Formulation, Methods, and Evaluation[5]
迁移学习:Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer[6] (Paper[7])
迁移学习:Neural Transfer Learning for Natural Language Processing[8]
知识图谱:A Survey on Knowledge Graphs: Representation, Acquisition and Applications[9]
命名实体识别:A Survey on Deep Learning for Named Entity Recognition[10]
关系抽取:More Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction[11]
情感分析:Deep Learning for Sentiment Analysis : A Survey[12]
ABSA情感分析:Deep Learning for Aspect-Level Sentiment Classification: Survey, Vision, and Challenges[13]
文本匹配:Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering[14]
阅读理解:Neural Reading Comprehension And Beyond[15]
阅读理解:Neural Machine Reading Comprehension: Methods and Trends[16]
机器翻译:Neural Machine Translation: A Review[17]
机器翻译:A Survey of Domain Adaptation for Neural Machine Translation[18]
预训练模型:Pre-trained Models for Natural Language Processing: A Survey[19]
注意力机制:An Attentive Survey of Attention Models[20]
注意力机制:An Introductory Survey on Attention Mechanisms in NLP Problems[21]
注意力机制:Attention in Natural Language Processing[22]
BERT:A Primer in BERTology: What we know about how BERT works[23]
Beyond Accuracy: Behavioral Testing of NLP Models with CheckList[24]
Evaluation of Text Generation: A Survey[25]
推荐系统
Recommender systems survey[26]
Deep Learning based Recommender System: A Survey and New Perspectives[27]
Are We Really Making Progress? A Worrying Analysis of Neural Recommendation Approaches[28]
A Survey of Serendipity in Recommender Systems[29]
Diversity in Recommender Systems – A survey[30]
A Survey of Explanations in Recommender Systems[31]
深度学习
A State-of-the-Art Survey on Deep Learning Theory and Architectures[32]
知识蒸馏:Knowledge Distillation: A Survey[33]
模型压缩:Compression of Deep Learning Models for Text: A Survey[34]
迁移学习:A Survey on Deep Transfer Learning[35]
神经架构搜索:A Comprehensive Survey of Neural Architecture Search-- Challenges and Solutions[36]
神经架构搜索:Neural Architecture Search: A Survey[37]
计算机视觉
目标检测:Object Detection in 20 Years[38]
对抗性攻击:Threat of Adversarial Attacks on Deep Learning in Computer Vision[39]
自动驾驶:Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art[40]
强化学习
A Brief Survey of Deep Reinforcement Learning[41]
Transfer Learning for Reinforcement Learning Domains[42]
Review of Deep Reinforcement Learning Methods and Applications in Economics[43]
Embeddings
图:A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications[44]
文本:From Word to Sense Embeddings:A Survey on Vector Representations of Meaning[45]
文本:Diachronic Word Embeddings and Semantic Shifts[46]
文本:Word Embeddings: A Survey[47]
A Survey on Contextual Embeddings[48]
Meta-learning & Few-shot Learning
A Survey on Knowledge Graphs: Representation, Acquisition and Applications[49]
Meta-learning for Few-shot Natural Language Processing: A Survey[50]
Learning from Few Samples: A Survey[51]
Meta-Learning in Neural Networks: A Survey[52]
A Comprehensive Overview and Survey of Recent Advances in Meta-Learning[53]
Baby steps towards few-shot learning with multiple semantics[54]
Meta-Learning: A Survey[55]
A Perspective View And Survey Of Meta-learning[56]
其他
A Survey on Transfer Learning[57]
本文参考资料
[1]
AI-Surveys: https://github.com/KaiyuanGao/AI-Surveys
[2]Recent Trends in Deep Learning Based Natural Language Processing: https://arxiv.org/pdf/1708.02709.pdf
[3]Deep Learning Based Text Classification: A Comprehensive Review: https://arxiv.org/pdf/2004.03705
[4]Survey of the SOTA in Natural Language Generation: Core tasks, applications and evaluation: https://www.jair.org/index.php/jair
除特别声明,本站所有文章均为原创,如需转载请以超级链接形式注明出处:SmartCat's Blog
上一篇: 拜托,学妹,别再问我怎么自学 Java 了!和盘托出
下一篇: Polar mask错误总结
精华推荐