Young87

当前位置:首页 >个人收藏

推荐收藏!机器学习领域最全综述列表!

作者:kaiyuan,来源:NewBeeNLP

继续来给大家分享github上的干货,一个『机器学习领域综述大列表』,涵盖了自然语言处理、推荐系统、计算机视觉、深度学习、强化学习等主题。

另外发现源repo中NLP相关的综述不是很多,于是把一些觉得还不错的文章添加进去了,重新整理更新在 AI-Surveys[1] 中。

  • ml-surveys: https://github.com/eugeneyan/ml-surveys

  • AI-Surveys: https://github.com/KaiyuanGao/AI-Surveys

『收藏等于看完』系列,来看看都有哪些吧, enjoy!

自然语言处理

  • 深度学习:Recent Trends in Deep Learning Based Natural Language Processing[2]

  • 文本分类:Deep Learning Based Text Classification: A Comprehensive Review[3]

  • 文本生成:Survey of the SOTA in Natural Language Generation: Core tasks, applications and evaluation[4]

  • 文本生成:Neural Language Generation: Formulation, Methods, and Evaluation[5]

  • 迁移学习:Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer[6] (Paper[7])

  • 迁移学习:Neural Transfer Learning for Natural Language Processing[8]

  • 知识图谱:A Survey on Knowledge Graphs: Representation, Acquisition and Applications[9]

  • 命名实体识别:A Survey on Deep Learning for Named Entity Recognition[10]

  • 关系抽取:More Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction[11]

  • 情感分析:Deep Learning for Sentiment Analysis : A Survey[12]

  • ABSA情感分析:Deep Learning for Aspect-Level Sentiment Classification: Survey, Vision, and Challenges[13]

  • 文本匹配:Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering[14]

  • 阅读理解:Neural Reading Comprehension And Beyond[15]

  • 阅读理解:Neural Machine Reading Comprehension: Methods and Trends[16]

  • 机器翻译:Neural Machine Translation: A Review[17]

  • 机器翻译:A Survey of Domain Adaptation for Neural Machine Translation[18]

  • 预训练模型:Pre-trained Models for Natural Language Processing: A Survey[19]

  • 注意力机制:An Attentive Survey of Attention Models[20]

  • 注意力机制:An Introductory Survey on Attention Mechanisms in NLP Problems[21]

  • 注意力机制:Attention in Natural Language Processing[22]

  • BERT:A Primer in BERTology: What we know about how BERT works[23]

  • Beyond Accuracy: Behavioral Testing of NLP Models with CheckList[24]

  • Evaluation of Text Generation: A Survey[25]

推荐系统

  • Recommender systems survey[26]

  • Deep Learning based Recommender System: A Survey and New Perspectives[27]

  • Are We Really Making Progress? A Worrying Analysis of Neural Recommendation Approaches[28]

  • A Survey of Serendipity in Recommender Systems[29]

  • Diversity in Recommender Systems – A survey[30]

  • A Survey of Explanations in Recommender Systems[31]

深度学习

  • A State-of-the-Art Survey on Deep Learning Theory and Architectures[32]

  • 知识蒸馏:Knowledge Distillation: A Survey[33]

  • 模型压缩:Compression of Deep Learning Models for Text: A Survey[34]

  • 迁移学习:A Survey on Deep Transfer Learning[35]

  • 神经架构搜索:A Comprehensive Survey of Neural Architecture Search-- Challenges and Solutions[36]

  • 神经架构搜索:Neural Architecture Search: A Survey[37]

计算机视觉

  • 目标检测:Object Detection in 20 Years[38]

  • 对抗性攻击:Threat of Adversarial Attacks on Deep Learning in Computer Vision[39]

  • 自动驾驶:Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art[40]

强化学习

  • A Brief Survey of Deep Reinforcement Learning[41]

  • Transfer Learning for Reinforcement Learning Domains[42]

  • Review of Deep Reinforcement Learning Methods and Applications in Economics[43]

Embeddings

  • 图:A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications[44]

  • 文本:From Word to Sense Embeddings:A Survey on Vector Representations of Meaning[45]

  • 文本:Diachronic Word Embeddings and Semantic Shifts[46]

  • 文本:Word Embeddings: A Survey[47]

  • A Survey on Contextual Embeddings[48]

Meta-learning & Few-shot Learning

  • A Survey on Knowledge Graphs: Representation, Acquisition and Applications[49]

  • Meta-learning for Few-shot Natural Language Processing: A Survey[50]

  • Learning from Few Samples: A Survey[51]

  • Meta-Learning in Neural Networks: A Survey[52]

  • A Comprehensive Overview and Survey of Recent Advances in Meta-Learning[53]

  • Baby steps towards few-shot learning with multiple semantics[54]

  • Meta-Learning: A Survey[55]

  • A Perspective View And Survey Of Meta-learning[56]

其他

  • A Survey on Transfer Learning[57]

本文参考资料

[1]

AI-Surveys: https://github.com/KaiyuanGao/AI-Surveys

[2]

Recent Trends in Deep Learning Based Natural Language Processing: https://arxiv.org/pdf/1708.02709.pdf

[3]

Deep Learning Based Text Classification: A Comprehensive Review: https://arxiv.org/pdf/2004.03705

[4]

Survey of the SOTA in Natural Language Generation: Core tasks, applications and evaluation: https://www.jair.org/index.php/jair

除特别声明,本站所有文章均为原创,如需转载请以超级链接形式注明出处:SmartCat's Blog

上一篇: 拜托,学妹,别再问我怎么自学 Java 了!和盘托出

下一篇: Polar mask错误总结

精华推荐